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By Robert Y. Wong, D a n i e l  E. Monroe, and William T. Wfntucky 

SUMMARY 

T h e  results of an experimental  investigation of a transonic  turbine 
designed f o r  a diffusion parameter of 0.30 are  presented  herein. The 
experimental performance of this   turbine was cumpared. with  the  experi- 
m e n t a l  performance obtained for another  transonic  turbine  designed f o r  
a diffusion parameter of 0.15. The higher-diffusion  turbine had a 4- 
point loss Ln design-point  efficiency as campared with tha t  of the 
lower-diffusion  turbine. The loss patterns of both  turbine  configura- 
%ions, as indicated  by surveys, were found t o  have similar trends. In 
the  region of the hub and mean sections, the efficiency was found t o  be 
of cornpaable levels f o r  both  turbines,  while from %he mean t o  the  t ip ,  
a much greater  drop-off i n  efficiency  occurred for the  higher-diffusion 
turbine  than for the  lower-diffusion  turbine. F r o m  these  surveys it i s  
believed  that  the  three-dimensional  characteristics of the turbine may 
have an Fmportant effect on rotor  losses by causing a transport of low- 
momentum fluids fram the hub and mean sections t o  the t i9 region, which 
add to   the  measured losses and may even create  further loss i n   t h i s  
region. 

IWTFlODUCTION 

A research program i s  i n  progress at the NACA L e w i s  laboratory  to 
s t u d y  problems associated  with attainhg efficient  transonic  turbines. 
A transonic  turbine is defined  as a turbine design& fo r  a rotor-hub- 
in le t   re la t ive  Mach  llLLzdber of approxhately  unity. If' efficiencies com- 
garable  with ConventionaL turbines cazl be  obtdned for transonic tur- 
bines, a more ' campact turbine component will be  available f o r  use i n  
turbojet  engines. The investigation of one transonic  turbine (ref. 1) 
indicated that, with  proper  design  considerations,  turbine6  designed fo r  
rotor-hub-inlet relative Mach nunibers of unity can operate  with  effi- 
ciencies of at least 0.85. 
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Results of recent compressor loss investigations (ref. 2, e.g.) 
inaicate that diffusion of blade-surface  velocities i s  a very  important 
design  consideration i n  minimizing compressor-blade losses and tha t  above 
a certain  value of diffusion the losses  increase ragidly. Thus diffusion 
should a l s o  be considered in  the design of turbines  in  order that blade 
losses be &-zed.  However, t o  date, the degree t o  which this pasam- 
eter   affects   turbine losses has not been evaluated. For example, the 
turbine of reference 1, hereinafter  designated as transonic  turbine A, 
w a s  designed f o r  a rotor  suction-surface  diffusion parameter of 0.15 
(diffusion parameter D i s  defined as the diff erence between the peak 
suction-surface  relative  velocity and the blade out le t  relative velocity 8 
d i v i d e d  by the peak suction-surface  relative  velocity), but it is not 
known whether this value of the  dfffusion  parameter  resulted  in low or  
excessive blade losses. Thus, in   order  t o  gain an insight  into  the 
effect  of increased  diffusion on the performance of transonic  turbines, 
the  investigation of another  trmsonic  turbine,  herein&ter  referred  to 
as transonic  turbine B, designed f o r  a diffusion parameter D of 0.30, 
or  twice that of transonic  turbine A, was conducted. 

. 

to 

The results of this  investigation  are  presented  herein. Compari- 
sons between the performance of the two turbines were made i n  order t o  
evaluate the effects  of increased blade-surface W f  usfon on turbine 
performance.  Local adiabatic  efficiencies  across  the  turbine from 
s ta tor  inlet to  rotor  outlet ,   obtained from  surveys, are also presented 
to   indicate  where lossea result ing from high diffusion m a n i f e s t  
themselve 6. 

SYMBOLS 

The following symbols are used i n  this report: 

D diffusion parameter defined as difference between peak suction- 
surface relative  velocity and blade  outlet  relative  velocity 
( stat ion 5) divided by peak suction-surface  relative  velocity 

Ah specific work output, Btu/lb 

N rotat ive speed, rpm 

P absolute  pressure, lb/sq f t  

r radius, f t  

U blade  velocity,  ft/sec 

v absolute  gas  velocity,  ft/sec 
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relative gas velocity, ft/sec 

weight flow, lb/sec 

r a t i o  of specific heats 

r a t i o  of turbine- inlet   to ta l   pressure  to  IHACA standard  sea-level 
pressure p;/p+ 

function of 

local adiabatic efficiency based on t o t a l  state measurements 
upstream of s ta tor  asd downstream of rotor  

adiabatic efficiency defined as - ra t io  of turbine work based on 
torque, w e i g h t  f l ow,  and speed measurements t o  ideal work based 
on i n l e t   t o t a l  temperature, Sna inlet and outlet   total   pressure,  . 
both  defined as 8m of static pressure plus pressure correspond- 
ing t o  the absolute gas velocity 

adiabatic  efficiency defined a6 r a t i o  of turbine work based 011 
torque,  weight f l o w ,  and speed measurements t o  ideal work based 
on i n l e t   t o t a l  temperature, and inlet and out le t  total pressure, 
both defined as sum of sbatic  presaure  plus  pressure correspond- 
fng t o  axial component of absolute gas velocity 

squared r a t i o  
velocity at 

Subscripts: 

cr conditions at 

t t i p  . 

of critikl velocity at turbine inlet  t o   c r i t i c a l  
W A  s t d a r a  sea-level temperature ( V ~ , ~ / V + , ) ~  

Mach n&er of unity 

X axial direction 

0 s ta t ion  upstream of s ta tor  (see f ig .  1) 

1 sta t ion  at throat of stator  passage 

2 statLon at out le t  of s ta tor   jus t  upstream  from t r a i l i ng  edge 

-. ' 
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3 stat ion at free-stream  condition between s ta tor  and rotor  

4 stat ion a t  throat of rotor  passage 

5 s ta t ion  at out le t  of rotor  just upstream from t r a i l i ng  ed.ge 

6 stat ion damstream  from turbine 

Sqperscripts: 

* N M A  standard  conditions 

1 t o t a l  state 

TLIRBINE DESIGN 

Design  Requirements 

As Uscussed i n  the INTRODUCTION, transonic  turbine B w a s  designed 
fo r  a diffusion paxameter D of 0.30 t o  invest-igate the  effect  of 
increased  diffuslon on the performance of transonic  turbines. I n  
order t o  minimize effects of extraneous  factors on this  investigation, 
the  rotor-inlet  conditions and the peak surface velocit ies of turbine A 
were specified as rotor-blade  requirements of turbine B. Thus the 
effect  of the s ta tors  on losses of the two rotors  may be expected t o  be 
comparable, and shock losses within the rotor  result ing from the high 
surface  velocities may also be expected t o  be comparable. These blade 
and diffusion  requirements  resulted i n  a turbine I3 work output approxi- 
mately 11 percent less than that of turbine A. The design  requirements 
tha t  meet the above stated conditions f o r  the 14-inch cold-air  turbine 
investigated  herein are as .follows: 

Design Velocity Diagrams 

The design  velocity diagrams were constructed far the  free-stream 
stations 0, 3, and 6 at  the hub, man, and t ip   sect ions and were based 
on the  following assumptions: 

(I) Free vortex f low 

(2) Simple radial equilibrium 

L 

M 

M 
3 
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4 (3) A 3-percent  total-pressure loss across  the stator 

5 

(4) Adiabatic  efficiency qt of 0.88 to obtain  velocity diagrams 
a t   s ta t ion  6 

These diagrams, together  with a sketch of a typical  blade channel show- 
ing  the  station nomenclature used, are shawn in  figure 1. Also included 
are  the  velocity diagrams at stations 2 and 5 ( just   ins ide  the blade 
passage at the   t ra i l ing  edge), w h i c h  ere used only in the blade design 
procedure. The assumptions  by which these  velocities are obtained are 

rotor-inlet  velocity diagrams are ident ical  with those used in   t he  de- 
sign of transonic  turbine A, the  exit diagrams -fer because of the 
specified M u s i o n  and peak surface  velocity. The turbine  discharge i s  
designed for  zero whirl, and considerable  negative  reaction  across  the 

w w 
0 
CN fully discussed i n  the  section TURBm DESIGm of reference 1. Shce the 

hub &St6 ( (w/wm)3 = 1.000 (w/w,) 6 t 0.753). The design  reaction 
(defined as the   r a t io  of rotor- inlet  static  pressure t o  rotor-outlet 
static  pressure) across the rotor hub is 0.75 as compared with 0.91 f o r  
transonic turbine A. The design gas turning across the  r o t o r  varies 
from 92.4O at the  rotor hub t o  70.9O at  the  t ip ,  whereas the gas turning 
across the  rotor of transonic  turbine A was 96 7' t o  71.7O from hub t o  
tip,  respectively. The ro to r  of transonic turbine B i s  not  desi ed t o  
choke since  the  relative  cri t ical   velocity  ratio at Station 5 (W&5 
v a r i e s  from 0.803 t o  0.914 from hub to  t ip,   respectively.  

Rotor-Blade D e s i g n  

The design procedure used t o  obtain the  rotor  blades i s  described 
in reference 1. With the  specified limit of 1.33 imposed on the  surface 
Mach  number and a prescribed  sinusoidal v a r i a t i o n  of' the hub midrhnnnel 
re la t ive  cr i t ical   veloci ty  r a t i o  from inlet t o  outlet, 27 blades were 
required, thus resulting in solidities  (based on chord) of 2.65 and 1.92 
at the hub and tip,  respectively. The sol idi ty  of turbine B was there- 
f o r e  24 percent less than  that of turbfne A. 

The rotor-blade  coordinates and sections  for  the hub, mean, and t i9 
are sham in table I and figure 2, respectively. As w a s  found f o r  tran- 
sonic  turbine A (ref. l), the hub flow channel of transonic turbFne B 
83so diverges from inlet t o  outlet,  the mean-section flow channel is 
approximately a constant area from inlet t o  outlet, and the  tip-section 
flow channel converges from inlet t o  outlet. A photograph of the  rotor 
assembly used i n  t h i s  investigation is  shown i n  figure 3. 

The design  surface  velocity  distributions  for  the hub,  mean, and 
t ip   sect ions &re given in figure 4. The prescribed  sinusoidal hub mid- 
channel  velocity  veziation fs also indicated. The midchamel velocity 
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variation  required at the mean and t ip   sect ions to  sat isfy both radial 
equilibrium and the  prescribed hub midchannel velocity  distribution i s  
a l s o  shown; and these midchannel velocities  are seen t o  accelerate 
ragidly over the first half' of the  blade,  reach a maxfmum at about mid- 
chord, and then remain  approximately  constant to  the  outlet. The dif-  
fusion parameter D calculated from the c r i t i ca l   ve loc i ty   ra t ios  given 
i n  figure 4 was found to  be  approximately a constant  value of 0.30 from 
hub t o   t i p .  

P 

b 

The ammatus,  the  instrumentation, and the methuds used i n  calcu- 
lating  the performance parameters used i n  t h i s  investigation were the 
same as those  described in   de ta i l   in   re fe rence  1. A schematic drawing 
of the  apparatus is eham in figure 5- 

The experimental  investigation was conducted by operating  the tur- 
bine at constant nominal fnlet  conditions of 32 inchee mercury absolute 
and 145O F and a t  constant speed values  over a range of 30 t o  130 percent 
of design speed. i n  even increments of 10 percent.  For each speed inves- 
tigated, a range of total-pressure ratio from approxLmafely 1.4 t o  that 
correqponding to limiting l o d i n g  was obtsined.  Detailed  circumferentid 
and raaial survey8 'of total temperature and total   pressure were made 
downstream of the rotor (fig . 5, station 6 )  at approxlmstely  design * 
speed and work output. 

The precision of the measurements used i n  calculating the over-& 
performasce  parameters ia estimated t o  be  within the following Umfts: 

Tcmgerature, ?l? . . . . . . . . . . . . . . . . . . . . . . . . .  f13.5 
Pressure, in. Eg . . . . . . . . . . . . . . . . . . . . . . . .  M.05 
Turbine speed, rpm . . . . . . . . . . . . . . . . . . . . . . .  f10.0 
Torque, percent of design . . . . . . . . . . . . . . . . . . . .  fo.5 

The maximum probable  error in the adiabatic  efficiency at o r  ne= design- 
point  operation was estimated t o  be  within H .5  point. The reproducibil- 
i t y  of a given set  of data 011 the a u t m t i c  curve tracer used only t o  
record survey data was observed to be wi'thin N.5 percent. 

The results of the experimental  investigation of transonic  turbine 
B, designed f o r  a diffusion parameter D of 0.30, are presented  herein 
and compared, with the performance of transonic turbine A, designed f o r  
a diffusion parameter of 0.15,- to  indicate  the  effects of increased 
diffusion on the performance of t ransonic turbines. Radial and cfrcum- 
ferent ia l  surveys downstream of the ro tor  are also presented t o  further 
indicate the  effects of the increased  diffusion on turbine performance. 
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Over-All  Performance 
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The over-all performance of transordc  turbine B is presented i n  
figure 6 .  The equivalent  specific work output A h ’  8, i s  shown as a 
function of the  weight Plow - speed  parameter twH / 6, wfth rat ing  total-  
pressure  ratio  pl/pt , percent  design speed, and ma;batic  efffclency 

‘IX as contours. Design equivalent  specific work output waa obtabed at 
design speed with an adiabatic  efficiency qx of approximately 0-81. 
Zero exit whfrl .  was observed t o  occur at  approxfmately  deslgn-point 
operation, &s de8QEd.j  thus the adiabatic  efficiency qx i s  equivalent 
to  the  adiabatic  efficiency Tt at the design-point  aperatfon. As 
reported i n  reference I, design work output at design speed was obtained 
from transonic  turbine A at an adiabatic  efficiency q t  of 0.85- Thus, 
there w a s  a 4-point loss in the  design-point  efficiency of turbine B as 
compared with turbine A. 

0 6 , x  

Survey Investigation 

I n  order t o  gain a further insight Fnto the Loss characteristics 
associated wtth increased  diffusion of the suction-surface  velocity, 
detailed radial and circumferential  surveys were made downstream of the 
rotor at approximately  design-point  operation. The results of the s w -  
vey investigation  are sham i n  figure 7 i n  terms of loca l  adiabatic 
efftciency  acroas the turbine f r o m  the  s ta tor  M e t  to the turbine  out- 
l e t .  A s  pofnted  out i n  reference I, these results serve only t o  indicate 
general  trends  in L O C ~  adiabatic  efficiency and may not  be  representa- 
t i v e  of the a c t u d  level.  A n  Fnspection of figure 7 indicates that there 
is a regfon of low local  efficiency neaz the hub; also there appears t o  
be a region of low eff Lciency extending from hub t o  t i p  waich divides 
the regions of high efficiency. These regions of low local  ediabatic 

. efficiency have been observed to be effects  of the s t a t o r  passage  vortex 
and the  stator-bIade w&es, respecWvely (ref. 3). Thus the s ta tor  
effects  are  superh@osed on the rotor effects. Ln order t o  sepazate the 
rotor effects from the   s ta tor   effects ,  a p l o t  of peak local  adiabatic 
efficiency &gainst r8.dius i s  presented in figure 8 A similar plot  f o r  
transonic  turbine A i s  also shown; these results were obtained with in- 
strumentation having chaxacteristics that are  considered more congarable 
with those used 5 n  the survey  investigation of transonic  turbine B. Thus 
the  peak values of local  adiabatic  efficiency  given  herein for transonic 
turbine A me slightly  different from those  given i n  figure LO(b) of 
reference 1. It should be noted, however, t ha t  the  general  trends  re- 
ported i n  reference 1 are va l id-  An inspectiop of ffgure 8 shows t ha t  
the local  adiabatic efficiencies i n  the region of the hub and mean of the 
two turbine  configurations  are of comparable levels. For both  turbines 
the efficiency  drops off rapidly from about the mean radius t o  the t ip ,  
with a mch steeper  gradient in  efficiency in  the  region of the t i p  f o r  
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transonic  turbine B. Thus it i s  indicated that the increased  losses 
associated with the  increased  diffusion  parsmeter  are manifesting them- 
selves at the turbine exit i n  the t i p  region only. 

DISCUSSIOM 

The results of the  over-all  performance investigation of turbine B 
indicate a 4-point loss in   eff ic iency  as  compared with turbine A. In 
evaluating t h i s  loss, consideration must be given t o  the 11-percent dif-  
ference i n  work output between the two turbines (see TURBINE DEIGN sec- 
t ion).  For comparable total   losses  f o r  both  turbines,  this  reduction  in 
work output would r e s u l t   i n  approximately 5 points  reduction i n  effi- 
ciency. Thus, even taking t h i s  effect into account, a considerable  in- 
crease i n  the t o t a l  losses of turbine B i s  incurred as compared with tur- 
bine A. Although it appears that the increase i n  t o t a l  Losses i s  caused 
by the direct   effect  of increased  diffusion on blade viscous  losses, it 
must be remembered that the three-dimensional  characteristics of the tur- 
bine can also combine with t h i s  diffusion  effect t o  complicate the mech- 
= i s m  through which the  losses occur. The resu l t s  of the survey investi- 
gation  described herein and presented i n  figure 8 can be used t o  i l l u s -  
trate some of these three-dimensional effects.  

1 

The measured over-all  efficiencies at the hub and mean sections were 
of camparable levels f o r  both  turbines A and B. Because of three- 
dimensional  effects, the over-a31 losses measured at any particular 
radial stat ion may be dependent upon the  transport  of any low-momentum 
f l u i d s   t o   o r  from this station. It i s  believed that centrifugal  force 
acting on the boundary-layer fluids of the  hub and mean sections cause8 
a movement of a certain amount of these  f luids   into the vicini ty  of the 
tip. From the  surveys  presented  herein, it appears that, i f  there WRS 
any increase in   over-al l   losses  a t  the hub and mean sections of tran- 
sonic turbine B, these increased losses were being measured i n   t h e  region 
of the t i p  as a resu l t  of bleedoff of low-momentum fluid8 by centrifugal 
force. This bleedoff  could have resulted in the conrparrable  measured 
efficiencies at the  hub and mean sectlons at the turbine  exit. It i s  also 
fe l t  that this bleedoff  or  asperating  effect would tend to  retaxd pos- 
sible flow sepazations  resulting from high  diffusion a t  these two sec- 
tione,  thereby  tending t o  improve the loss chmacteristics of these 
sectione. 

A t  the t ip ,  the surveys indicated that the efficiency of transonic 
turbine B dropped off considerably from that of transonic  turbine A. 
Since the t i p  section of transonic  turbine B was also designed fo r  a 
high diffusion as compared with that of transonic  turbine A, large In- 
creases i n  losses would be  expected  because of the effects  of the low- 
momentum fluids moving into  the t i p  region. These effects  will not only 
add t o  the measured losses   in  this region;  but, if appreciable movement 
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takes  place on the blade  surfaces,  these low-momentum fluids m y  also 
combine with  local  t ip losses occurring  as a result of complex t i p  sec- 
ondary flows and high diffusion t o  further  disrupt the flow i n  the crit- 
ical  t i p  region,  causing even greater losses  than that due t o  the  in- 
creased cliff usion  alone. 

From the  foregoing  considerationsi it i s  E .  ident that, although the 
loss  in  efficiency.of  transonic  turbine B from that ,of transonic turbine 
A i s  at t r ibutable   to  the effects of the increased  design  diffusion,  the 
three-dimensional  characteristics of the turbine can not only have a 
considerable  effect on the mechanism through w h l c h  these losses occur, 
but also make d i f f i cu l t  a rigorous  evaluation of the effect  of increased 
diffusion on losses. 

N 
3 

The results of the exgerlmental  investigation of a transonic tur- 
I b h e  designed far a dj-ffusion  parameter of 0.30 are compared with the 
3 experimental performance of another transonic turbine  designed  for a 

difpusion  parameter of 0.15 in order t o  evaluate  the  effect of increased 
diffusion on the performance of trassonic  turbines. The pertinent re- 
sults of this investigation can be suma~lzed  as follows: 

a 

- 
1. A t  design speed, deaign  equivalent  specific work was obtained a t  

an adiabatic  efficiency of 0.81- This represented a decrease of 4 points 
in   eff ic iency f r o m  the  tramunic turbine designed for a lower-diffusion 
parameter. 

2. The loss patterns of both  turbine  configurations, as indicated by  
surveys taken downstream of the  turbine  rotor, were found t o  have s t m i -  
trends. In the region of the hub and mean sections,  the measured losses 
were found t o  be of comparable levels, while in   the   reg ion  From the mean 
t o  the t ip ,  a much greater drqp-off in measured efficiency occurred for 
the higher-dLff  usion turblne than  for the lower-diff usion turbine. From 
these  surveys it is believed that the three-rtimensional  chazacteristica 
of the  turbine may have an hqortast   effect  on rotor  losses by cmsing a 
transport of low-momentum fluids fram the hub and m e a n  sections  to the 
t i p  region, which ada t o  the measured loss in this region and may even 
create  further  losses  in  this  region. 

Lewis Flight  Propulsion  Laboratory 
National Advisory Comittee f o r  Aeronautics 

Cleveland, Ohio, June 4, 1954 
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Figw-6 3. - Photogegh of ro tor  or transonic tur3ine B. 
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